Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Biochem Soc Trans ; 32(Pt 5): 733-7, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15494001

RESUMO

Protein synthesis in the cell is performed on ribosomes, large ribonucleoprotein particles, which in bacteria consist of three RNA molecules and over 50 proteins. This review summarizes recent progress in understanding the mechanisms of the elongation phase of protein synthesis. Results from rapid kinetic analysis of elongation reactions are discussed in the light of recent structural data.


Assuntos
Substâncias Macromoleculares/química , Ribossomos/química , Animais , Sítios de Ligação , Códon , Entropia , Hidrólise , Cinética , Modelos Biológicos , Peptídeos/química , Conformação Proteica , Transporte Proteico , Proteínas/química , RNA de Transferência/química , Ribossomos/metabolismo
3.
Mol Biol (Mosk) ; 35(4): 655-65, 2001.
Artigo em Russo | MEDLINE | ID: mdl-11524952

RESUMO

During the translocation step of the elongation cycle of peptide synthesis two tRNAs together with the mRNA move synchronously and rapidly on the ribosome. Translocation is catalyzed by the elongation factor G (EF-G) and requires GTP hydrolysis. The fundamental biochemical features of the process were worked out in the 1970-80s, to a large part by A.S. Spirin and his colleagues. Recent results from pre-steady-state kinetic analysis and cryoelectron microscopy suggest that translocation is a multistep dynamic process that entails large-scale structural rearrangements of both ribosome and EF-G. Kinetic and thermodynamic data, together with the structural information on the conformational changes of the ribosome and of EF-G, provide a detailed mechanistic model of translocation and suggest a mechanism of translocation catalysis by EF-G.


Assuntos
Elongação Traducional da Cadeia Peptídica , RNA de Transferência/genética , Ribossomos/genética , Animais , Guanosina Trifosfato/metabolismo , Humanos , Hidrólise , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/metabolismo , RNA de Transferência/metabolismo , Ribossomos/metabolismo
4.
Annu Rev Biochem ; 70: 415-35, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11395413

RESUMO

The ribosome discriminates between correct and incorrect aminoacyl-tRNAs (aa-tRNAs), or their complexes with elongation factor Tu (EF-Tu) and GTP, according to the match between anticodon and mRNA codon in the A site. Selection takes place at two stages, prior to GTP hydrolysis (initial selection) and after GTP hydrolysis but before peptide bond formation (proofreading). In part, discrimination results from different rejection rates that are due to different stabilities of the respective codon-anticodon complexes. An important additional contribution is provided by induced fit, in that only correct codon recognition leads to acceleration of rate-limiting rearrangements that precede chemical steps. Recent elucidation of ribosome structures and mutational analyses suggest which residues of the decoding center may be involved in signaling formation of the correct codon-anticodon duplex to the functional centers of the ribosome. In utilizing induced fit for substrate discrimination, the ribosome resembles other nucleic acid-programmed polymerases.


Assuntos
Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/metabolismo , Sítios de Ligação , Códon , Cinética , Fator Tu de Elongação de Peptídeos/metabolismo , Ribossomos/química
5.
RNA ; 7(2): 293-301, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11233986

RESUMO

Binding of Escherichia coli signal recognition particle (SRP) to its receptor, FtsY, requires the presence of 4.5S RNA, although FtsY alone does not interact with 4.5S RNA. In this study, we report that the exchange of the GGAA tetraloop sequence in domain IV of 4.5S RNA for UUCG abolishes SRP-FtsY interaction, as determined by gel retardation and membrane targeting experiments, whereas replacements with other GNRA-type tetraloops have no effect. A number of other base exchanges in the tetraloop sequence have minor or intermediate inhibitory effects. Base pair disruptions in the stem adjacent to the tetraloop or replacement of the closing C-G base pair with G-C partially restored function of the otherwise inactive UUCG mutant. Chemical probing by hydroxyl radical cleavage of 4.5S RNA variants show that replacing GGAA with UUCG in the tetraloop sequence leads to structural changes both within the tetraloop and in the adjacent stem; the latter change is reversed upon reverting the C-G closing base pair to G-C. These results show that the SRP-FtsY interaction is strongly influenced by the structure of the tetraloop region of SRP RNA, in particular the tetraloop stem, and suggest that both SRP RNA and Ffh undergo mutual structural adaptation to form SRP that is functional in the interaction with the receptor, FtsY.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli , RNA Ribossômico/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Pareamento de Bases , Sequência de Bases , Sobrevivência Celular , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Mutação , Plasmídeos , RNA Bacteriano , RNA Ribossômico/genética , Receptores Citoplasmáticos e Nucleares/genética , Ribossomos/genética , Ribossomos/metabolismo , Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/genética
6.
J Mol Evol ; 52(2): 129-36, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11231892

RESUMO

Elongation factor (EF) Tu alternates between two interaction partners, EF-Ts and the ribosome, during its functional cycle. On the ribosome, the interaction involves, among others, ribosomal protein L7/12. Here we compare EF-Ts and L7/12 with respect to the conservation of sequence and structure. There is significant conservation of functionally important residues in the N-terminal domain of EF-Ts and in the C-terminal domain of L7/12. The structure alignment based on the crystal structures of the two domains suggests a high degree of similarity between the alpha A--beta D--alpha B motif in L7/12 and the h1--turn--h2 motif in EF-Ts which defines a common structural motif. The motif is remarkably similar with respect to fold, bulkiness, and charge distribution of the solution surface, suggesting that it has a common function in binding EF-Tu.


Assuntos
Motivos de Aminoácidos , Proteínas de Bactérias/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Fatores de Alongamento de Peptídeos/química , Proteínas Ribossômicas/química , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Modelos Moleculares , Dados de Sequência Molecular , Fator Tu de Elongação de Peptídeos/genética , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Alinhamento de Sequência
7.
Trends Biochem Sci ; 26(2): 124-30, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11166571

RESUMO

The ribosome selects aminoacyl-tRNAs with high fidelity. Kinetic studies reveal that codon-anticodon recognition both stabilizes aminoacyl-tRNA binding on the ribosome and accelerates reactions of the productive pathway, indicating an important contribution of induced fit to substrate selection. Similar mechanisms are used by other template-programmed enzymes, such as DNA and RNA polymerases.


Assuntos
Biossíntese de Proteínas , RNA de Transferência/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Códon , DNA Polimerase Dirigida por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Cinética , Modelos Biológicos , Modelos Moleculares
9.
RNA ; 7(12): 1879-85, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11780642

RESUMO

During the translocation step of the elongation cycle, two tRNAs together with the mRNA move synchronously and rapidly on the ribosome. The movement is catalyzed by the binding of elongation factor G (EF-G) and driven by GTP hydrolysis. Here we study structural changes of the ribosome related to EF-G binding and translocation by monitoring the accessibility of ribosomal RNA (rRNA) for chemical modification by dimethyl sulfate or cleavage by hydroxyl radicals generated by Fe(II)-EDTA. In the state of the ribosome that is formed upon binding of EF-G but before the movement of the tRNAs takes place, residues 1054,1196, and 1201 in helix 34 in 16S rRNA are strongly protected. The protections depend on EF-G binding, but do not require GTP hydrolysis, and are lost upon translocation. Mutants of EF-G, which are active in ribosome binding and GTP hydrolysis but impaired in translocation, do not bring about the protections. According to cryo-electron microscopy (Stark et al., Cell, 2000, 100:301-309), there is no contact of EF-G with the protected residues of helix 34 in the pretranslocation state, suggesting that the observed protections are due to an induced conformational change. Thus, the present results indicate that EF-G binding to the pretranslocation ribosome induces a structural change of the head of the 30S subunit that is essential for subsequent tRNA-mRNA movement in translocation.


Assuntos
Elongação Traducional da Cadeia Peptídica , Fator G para Elongação de Peptídeos/metabolismo , RNA Ribossômico 16S/metabolismo , Ribossomos/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólise , Modelos Moleculares , Movimento , Mutação , Conformação de Ácido Nucleico , Fator G para Elongação de Peptídeos/genética , RNA Ribossômico 16S/química , Ribossomos/química , Ésteres do Ácido Sulfúrico/química
10.
Nat Struct Biol ; 7(11): 1027-31, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11062557

RESUMO

Upon transpeptidylation, the 3' end of aminoacyl-tRNA (aa-tRNA) in the ribosomal A site enters the A/P hybrid state. We report that transpeptidylation of Phe-tRNA to fMetPhe-tRNA on Escherichia coli ribosomes substantially lowers the kinetic stability of the ribosome-tRNA complex and decreases the affinity by 18.9 kJ mol(-1). At the same time, the free energy of activation of elongation factor G dependent translocation decreases by 12.5 kJ mol(-1), indicating that part of the free energy of transpeptidylation is used to drive translocation kinetically. Thus, the formation of the A/P hybrid state constitutes an important element of the translocation mechanism.


Assuntos
RNA de Transferência de Metionina/química , RNA de Transferência de Metionina/metabolismo , RNA de Transferência de Fenilalanina/química , RNA de Transferência de Fenilalanina/metabolismo , Ribossomos/metabolismo , Sítios de Ligação , Catálise/efeitos dos fármacos , Escherichia coli/genética , Cinética , Magnésio/farmacologia , Elongação Traducional da Cadeia Peptídica/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , RNA de Transferência de Metionina/genética , RNA de Transferência de Fenilalanina/genética , Ribossomos/química , Espermina/farmacologia , Termodinâmica
11.
Mol Cell ; 6(2): 501-5, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10983996

RESUMO

Elongation factor G (EF-G) from Escherichia coli is a large, five-domain GTPase that promotes tRNA translocation on the ribosome. Full activity requires GTP hydrolysis, suggesting that a conformational change of the factor is important for function. To restrict the intramolecular mobility, two cysteine residues were engineered into domains 1 and 5 of EF-G that spontaneously formed a disulfide cross-link. Cross-linked EF-G retained GTPase activity on the ribosome, whereas it was inactive in translocation as well as in turnover. Both activities were restored when the cross-link was reversed by reduction. These results strongly argue against a GTPase switch-type model of EF-G function and demonstrate that conformational mobility is an absolute requirement for EF-G function on the ribosome.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Fator G para Elongação de Peptídeos/química , Fator G para Elongação de Peptídeos/metabolismo , Ribossomos/metabolismo , Substituição de Aminoácidos , Reagentes de Ligações Cruzadas , Cisteína , Escherichia coli/metabolismo , Guanosina Difosfato/metabolismo , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , RNA de Transferência/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Thermus thermophilus/metabolismo
12.
Biol Chem ; 381(5-6): 377-87, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-10937868

RESUMO

The elongation factors (EF) Tu and G and initiation factor 2 (IF2) from bacteria are multidomain GTPases with essential functions in the elongation and initiation phases of translation. They bind to the same site on the ribosome where their low intrinsic GTPase activities are strongly stimulated. The factors differ fundamentally from each other, and from the majority of GTPases, in the mechanisms of GTPase control, the timing of Pi release, and the functional role of GTP hydrolysis. EF-Tu x GTP forms a ternary complex with aminoacyl-tRNA, which binds to the ribosome. Only when a matching codon is recognized, the GTPase of EF-Tu is stimulated, rapid GTP hydrolysis and Pi release take place, EF-Tu rearranges to the GDP form, and aminoacyl-tRNA is released into the peptidyltransferase center. In contrast, EF-G hydrolyzes GTP immediately upon binding to the ribosome, stimulated by ribosomal protein L7/12. Subsequent translocation is driven by the slow dissociation of Pi, suggesting a mechano-chemical function of EF-G. Accordingly, different conformations of EF-G on the ribosome are revealed by cryo-electron microscopy. GTP hydrolysis by IF2 is triggered upon formation of the 70S initiation complex, and the dissociation of Pi and/or IF2 follows a rearrangement of the ribosome into the elongation-competent state.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo
13.
J Mol Biol ; 300(4): 951-61, 2000 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-10891280

RESUMO

Elongation factor G (EF-G) is a large, five domain GTPase that catalyses the translocation of the tRNAs on the bacterial ribosome at the expense of GTP. In the crystal structure of GDP-bound EF-G, domain 1 (G domain) makes direct contacts with domains 2 and 5, whereas domain 4 protrudes from the body of the molecule. Here, we show that the presence of both domains 4 and 5 is essential for tRNA translocation and for the turnover of the factor on the ribosome, but not for rapid single-round GTP hydrolysis by EF-G. Replacement of a highly conserved histidine residue at the tip of domain 4, His583, with lysine or arginine decreases the rate of tRNA translocation at least 100-fold, whereas the binding of the factor to the ribosome, GTP hydrolysis and P(i) release are not affected by the mutations. Various small deletions in the tip region of domain 4 decrease the translocation activity of EF-G even further, but do not block the turnover of the factor. Unlike native EF-G, the mutants of EF-G lacking domains 4/5 do not interact with the alpha-sarcin stem-loop of 23 S rRNA. These mutants are not released from the ribosome after GTP hydrolysis or translocation, indicating that the contact with, or a conformational change of, the alpha-sarcin stem-loop is required for EF-G release from the ribosome.


Assuntos
Escherichia coli/química , Proteínas Fúngicas , Fator G para Elongação de Peptídeos/química , Fator G para Elongação de Peptídeos/metabolismo , Ribossomos/metabolismo , Substituição de Aminoácidos/genética , Sítios de Ligação , Catálise , Sequência Conservada , Cristalografia por Raios X , Endorribonucleases/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólise , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico , Fator G para Elongação de Peptídeos/genética , Estrutura Terciária de Proteína , RNA Ribossômico 23S/química , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribossomos/química , Ribossomos/genética , Deleção de Sequência/genética , Ésteres do Ácido Sulfúrico/metabolismo
14.
EMBO J ; 19(13): 3458-64, 2000 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-10880458

RESUMO

GTP hydrolysis by elongation factor G (EF-G) is essential for the translocation step in protein elongation. The low intrinsic GTPase activity of EF-G is strongly stimulated by the ribosome. Here we show that a conserved arginine, R29, of Escherichia coli EF-G is crucial for GTP hydrolysis on the ribosome, but not for GTP binding or ribosome interaction, suggesting that it may be directly involved in catalysis. Another conserved arginine, R59, which is homologous to the catalytic arginine of G(alpha) proteins, is not essential for GTP hydrolysis, but influences ribosome binding and translocation. These results indicate that EF-G is similar to other GTPases in that an arginine residue is required for GTP hydrolysis, although the structural changes leading to GTPase activation are different.


Assuntos
Arginina/metabolismo , Guanosina Trifosfato/metabolismo , Fator G para Elongação de Peptídeos/metabolismo , Ribossomos/metabolismo , Transporte Biológico , GTP Fosfo-Hidrolases/metabolismo , Hidrólise , Fator G para Elongação de Peptídeos/química , Fator G para Elongação de Peptídeos/genética
15.
EMBO J ; 19(9): 2127-36, 2000 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-10790378

RESUMO

Binding of the 50S ribosomal subunit to the 30S initiation complex and the subsequent transition from the initiation to the elongation phase up to the synthesis of the first peptide bond represent crucial steps in the translation pathway. The reactions that characterize these transitions were analyzed by quench-flow and fluorescence stopped-flow kinetic techniques. IF2-dependent GTP hydrolysis was fast (30/s) followed by slow P(i) release from the complex (1.5/s). The latter step was rate limiting for subsequent A-site binding of EF-Tu small middle dotGTP small middle dotPhe-tRNA(Phe) ternary complex. Most of the elemental rate constants of A-site binding were similar to those measured on poly(U), with the notable exception of the formation of the first peptide bond which occurred at a rate of 0.2/s. Omission of GTP or its replacement with GDP had no effect, indicating that neither the adjustment of fMet-tRNA(fMet) in the P site nor the release of IF2 from the ribosome required GTP hydrolysis.


Assuntos
Escherichia coli/genética , Elongação Traducional da Cadeia Peptídica , Iniciação Traducional da Cadeia Peptídica , Biossíntese de Proteínas/genética , Códon/genética , Dipeptídeos/biossíntese , Dipeptídeos/metabolismo , Escherichia coli/metabolismo , Fluorescência , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólise , Cinética , N-Formilmetionina/metabolismo , Fator Tu de Elongação de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Fenilalanina/metabolismo , Fosfatos/metabolismo , Fator de Iniciação 2 em Procariotos , Ligação Proteica , RNA de Transferência de Metionina/genética , RNA de Transferência de Metionina/metabolismo , RNA de Transferência de Fenilalanina/genética , RNA de Transferência de Fenilalanina/metabolismo , Ribossomos/química , Ribossomos/genética , Ribossomos/metabolismo
16.
Cell ; 100(3): 301-9, 2000 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-10676812

RESUMO

Elongation factor (EF) G promotes tRNA translocation on the ribosome. We present three-dimensional reconstructions, obtained by cryo-electron microscopy, of EF-G-ribosome complexes before and after translocation. In the pretranslocation state, domain 1 of EF-G interacts with the L7/12 stalk on the 50S subunit, while domain 4 contacts the shoulder of the 30S subunit in the region where protein S4 is located. During translocation, EF-G experiences an extensive reorientation, such that, after translocation, domain 4 reaches into the decoding center. The factor assumes different conformations before and after translocation. The structure of the ribosome is changed substantially in the pretranslocation state, in particular at the head-to-body junction in the 30S subunit, suggesting a possible mechanism of translocation.


Assuntos
Movimento , Elongação Traducional da Cadeia Peptídica , Fator G para Elongação de Peptídeos/ultraestrutura , RNA de Transferência/ultraestrutura , Ribossomos/ultraestrutura , Ácido Fusídico/farmacologia , Processamento de Imagem Assistida por Computador , Modelos Moleculares , Modelos Estruturais , Conformação Molecular , Elongação Traducional da Cadeia Peptídica/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , RNA de Transferência de Metionina/ultraestrutura , RNA de Transferência de Fenilalanina/ultraestrutura
17.
Biochemistry ; 39(7): 1734-8, 2000 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-10677222

RESUMO

GTP hydrolysis by elongation factor Tu (EF-Tu) on the ribosome is induced by codon recognition. The mechanism by which a signal is transmitted from the site of codon-anticodon interaction in the decoding center of the 30S ribosomal subunit to the site of EF-Tu binding on the 50S subunit is not known. Here we examine the role of the tRNA in this process. We have used two RNA fragments, one which contains the anticodon and D hairpin domains (ACD oligomer) derived from tRNA(Phe) and the second which comprises the acceptor stem and T hairpin domains derived from tRNA(Ala) (AST oligomer) that aminoacylates with alanine and forms a ternary complex with EF-Tu. GTP. While the ACD oligomer and the ternary complex containing the Ala-AST oligomer interact with the 30S and 50S A site, respectively, no rapid GTP hydrolysis was observed when both were bound simultaneously. The presence of paromomycin, an aminoglycoside antibiotic that binds to the decoding site and stabilizes codon-anticodon interaction in unfavorable coding situations, did not increase the rate of GTP hydrolysis. These results suggest that codon recognition as such is not sufficient for GTPase activation and that an intact tRNA molecule is required for transmitting the signal created by codon recognition to EF-Tu.


Assuntos
Guanosina Trifosfato/metabolismo , Fator Tu de Elongação de Peptídeos/metabolismo , RNA de Transferência de Fenilalanina/fisiologia , Ribossomos/metabolismo , Anticódon/química , Anticódon/metabolismo , Sítios de Ligação , Biopolímeros/metabolismo , Códon/metabolismo , Escherichia coli/metabolismo , Hidrólise , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Paromomicina/química , Paromomicina/metabolismo , Fator Tu de Elongação de Peptídeos/química , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Ribossomos/química
18.
J Mol Biol ; 295(4): 745-53, 2000 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-10656787

RESUMO

In cotranslational preprotein targeting in Escherichia coli, the signal recognition particle (SRP) binds to the signal peptide emerging from the ribosome and, subsequently, interacts with the signal recognition particle receptor, FtsY, at the plasma membrane. Both FtsY and the protein moiety of the signal recognition particle, Ffh, are GTPases, and GTP is required for the formation of the SRP-FtsY complex. We have studied the binding of GTP/GDP to FtsY as well as the SRP-FtsY complex formation by monitoring the fluorescence of tryptophan 343 in the I box of mutant FtsY. Thermodynamic and kinetic parameters of the FtsY complexes with GDP, GTP, and signal recognition particle are reported. Upon SRP-FtsY complex formation in the presence of GTP, the fluorescence of tryptophan 343 increased by 50 % and was blue-shifted by 10 nm. We conclude that GTP-dependent SRP-FtsY complex formation leads to an extensive conformational change in the I box insertion in the effector region of FtsY.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Guanosina Difosfato/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Substituição de Aminoácidos , Cinética , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Partícula de Reconhecimento de Sinal/química
19.
Nat Struct Biol ; 7(2): 104-7, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10655610

RESUMO

Binding of aminoglycoside antibiotics to 16S ribosomal RNA induces a particular structure of the decoding center and increases the misincorporation of near-cognate amino acids. By kinetic analysis we show that this is due to stabilization of the near-cognate codon recognition complex and the acceleration of two rearrangements that limit the rate of amino acid incorporation. The same rearrangement steps are accelerated in the cognate coding situation. We suggest that cognate codon recognition, or near-cognate codon recognition augmented by aminoglycoside binding, promote the transition of 16S rRNA from a 'binding' to a 'productive' conformation that determines the fidelity of decoding.


Assuntos
RNA Ribossômico 16S/química , RNA Ribossômico 16S/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/metabolismo , Antibacterianos/farmacologia , Sítios de Ligação , Guanosina Trifosfato/metabolismo , Hidrólise/efeitos dos fármacos , Leucina/metabolismo , Conformação de Ácido Nucleico , Paromomicina/farmacologia , Fator Tu de Elongação de Peptídeos/metabolismo , Biossíntese de Proteínas/fisiologia , RNA Ribossômico 16S/efeitos dos fármacos , RNA de Transferência de Fenilalanina/efeitos dos fármacos , RNA de Transferência de Fenilalanina/metabolismo
20.
J Biol Chem ; 275(2): 890-4, 2000 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-10625623

RESUMO

Elongation factors (EFs) Tu and G are GTPases that have important functions in protein synthesis. The low intrinsic GTPase activity of both factors is strongly stimulated on the ribosome by unknown mechanisms. Here we report that isolated ribosomal protein L7/12 strongly stimulates GTP hydrolysis by EF-G, but not by EF-Tu, indicating a major contribution of L7/12 to GTPase activation of EF-G on the ribosome. The effect is due to the acceleration of the catalytic step because the rate of GDP-GTP exchange on EF-G, as measured by rapid kinetics, is much faster than the steady-state GTPase rate. The unique, highly conserved arginine residue in the C-terminal domain of L7/12 is not essential for the activation, excluding an "arginine finger"-type mechanism. L7/12 appears to function by stabilizing the GTPase transition state of EF-G.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Fator G para Elongação de Peptídeos/metabolismo , Proteínas Ribossômicas/metabolismo , Substituição de Aminoácidos , Arginina , Guanosina Trifosfato/metabolismo , Cinética , Metionina , Mutagênese Sítio-Dirigida , RNA de Transferência de Fenilalanina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Ribossômicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...